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The radius of gyration of a branch of a uniform star polymer 

S G Whittingtoni, M K Kosmas?$ and D S Gaunt§ 
t Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 1Al  Canada 
B Department of Physics, King’s College, Strand, London WC2R 2LS, UK 

Received 10 June 1988 

Abstract. We use Monte Carlo methods and perturbation calculations to study the mean- 
square radius of gyration of a branch of a uniform star, with excluded volume, as a function 
of the number (f) of branches and of the number ( n )  of monomers per branch. We show 
that the mean-square radius ofgyration ( S ( n , f ) ’ )  scales like A ( f ) n ’ ” , f  fixed, n + a, where 
the exponent is independent off :  We estimate the amplitude ratios A ( f ) / A ( l )  for various 
values off and show that these ratios are lattice independent. The amplitude ratio increases 
as f increases, but the effect is small. The numerical agreement between the two methods 
is good, especially for small values of f: 

1. Introduction 

A uniform star polymer has f branches with n monomers in each branch. It is now 
possible t q  synthesise such $stars with a controlled number of monomers in each 
branch (Roovers et a1 1983) and measurements of the radius of gyration have been 
carried out fonvariJous values of f  (Bauer et a1 1980, Huber et a1 1984). In order to 
model the behaviour under theta conditions the radius of gyration has been calculated 
for random walk models (Zimm and Stockmayer 1949). In the good solvent regime 
an appropriate modet’must incorporate excluded-volume effects and such calculations 
have been carried out by renormalisation group methods (Miyake and Freed 1983, 
Vlahos and Kosmas 1984) and by Monte Carlo techniques (Zimm 1984, Whittington 
et a1 1986). There is general agreement that the ratio (g) of the mean-square radius 
of gyration for an $star divided by that for a linear polymer with the same total degree 
of polymerisation ( N  = nf+ 1) depends only weakly on the solvent, i.e. excluded- 
volume effects do not have a large effect on the value of g. However, the Monte Carlo 
results have established that there is considerable interference between the branches 
which results in an expansion of the branch as f increases at constant n. This is 
apparent in the mean-square end-to-end length of a branch (R, , ( f )*)  which scales like 
B(f)n’”,  as n+m. The ratio B( f ) /B( l )  is a lattice-independent quantity which 
increases as f increases (Whittington et a1 1986). 

The mean-square radius of gyration of a branch of a star should show similar 
behaviour. We expect it to scale like A(f)n2” and the amplitude ratios A(f ) /A( l )  
should increase with$ This might be observed experimentally by carrying out neutron 
scattering measurements on an $star with a single branch deuterated. In this paper 
we report the results of the first calculations which have been carried out for this 
problem. Using both first-order perturbation calculations and Monte Carlo methods, 
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we establish that the effect exists (i.e. the appropriate amplitude ratio increases with 
increasing f) and obtain good agreement between the results of the two approaches. 

2. First-order perturbation calculation about d = 4 

The mean-square radius of gyration of a branch of a uniform star can be written in 
terms of the squares of the inter-monomer distances as 

where R, is the position vector of the ith monomer in the j th  branch. In calculating 
the average (. . .) account must be taken of the interactions between monomers in the 
same branch and between monomers in different branches. In the Gaussian model 
with excluded volume the probability distribution of the configuration is given by 

n - I  f 

i - 0  j - 1  
P {R i j }  = (d/2ra2)””/’  exp( - (d/2a2)  - RY)’ 

I fl k f l  

and the average (. . .) with respect to P{R, , }  implies integration over all position vectors. 
As U increases the polymer chain goes from the ideal state corresponding to a 

random walk ( U  = 0) to an expanded state corresponding to a self-avoiding walk ( U  > 0). 
Each of these two states is characterised by a specific value ( U * )  of the interaction 
parameter, and the properties of the chain exhibit power-law behaviour with universal 
characteristic exponents. Calculations to second order in U ,  with the requirement of 
power-law behaviour, yield to first order in E = 4- d the characteristic values U* = 0 
for the ideal state and U* = ~ / 1 6  for the expanded state (Kosmas 1981). U *  is universal 
in the sense that it does not depend on specific constraints such as the architecture of 
the polymer (Vlahos and Kosmas 1984) or the presence of an interacting wall (Kosmas 
1985). It is a useful parameter since knowledge of U* to order E allows the calculation 
of critical exponents and universal amplitude ratios to the same order in E, using 
first-order perturbation expansions (in the parameter U )  about d = 4. 

In order to determine the mean-square radius of gyration of a branch, the mean- 
square distances of all pairs of monomers in the branch have to be calculated. To 
zeroth order in U the ideal random walk result - R,l)2)o = a’( i - j) is found from 
(2.2). The first-order terms require the evaluation of all diagrams with one loop. There 
are two classes of such diagrams, those coming from intra-branch interactions when 
both interacting units lie in the same branch, and those coming from inter-branch 
interactions when the interacting units are in different branches. In diagrammatic form 
the mean-square radius of gyration of a branch can be written as 

(S(n , f )2)=(a2/n2)  -+. - U  t 
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The first diagram corresponds to the unperturbed star, the next three to intra-branch 
interactions and the final two to inter-branch interactions. The dots correspond to a 
pair of monomers in the same branch and imply a summation over the square distances 
between such pairs of monomers (equation (2 .1) ) ,  while the loop is formed from two 
points in either one or two branches. The diagrams all have the form -(common 
part)2/(length of 100p) '+~ '~.  (See Fixman (1955) for a treatment of the d = 3  case.) 
After replacing the summations by integrations these can be evaluated at d = 4  and 
their values are given in table 1 .  Substituting the values of these diagrams in (2.3) gives 

( S ( n , f ) ' ) =  (na2 /6 ) {1+2u[ ln  n -E+( f - -1 ) ($ - -61n2)]} .  (2.4) 

For large n the In n term dominates in the coefficient of U, and is the first term in 
the expansion of n2" where v = i + u " = i + ~ / 1 6 + 0 ( ~ ~ )  is the critical exponent of the 
linear chain. The remaining $dependent part is significant when we calculate the 

Table 1. Forms and values of the diagrams for d = 4. 

= - J "  di j" dj 1' dk I,' d[ ( I -  i l 2 / ( j -  i 1 3 =  -n3/18 
0 , o  

= - j " d i 1 " dj [ ' dk " dI ( i - k) ' /  ( i + j ) 3  = n 3 (  7 In 2 - 5)/6 
0 0 0 ,  

Table 2. Estimates of the amplitude ratio A ( f ) / A ( l ) .  

Equation (2.5) 
f with E = 1 sc BCC 

2 1.027 
3 1.054 
4 1.081 
5 1.108 
6 1.135 
8 1.189 

1.025 1 0.002 
1.044 * 0.005 1.044 1 0.003 

1.060 * 0.004 
1.072 f 0.005 
1.085 * 0.01 1.0810.01 

1.101 0.02 
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amplitude ratio. We obtain 

A ( f ) / A ( l ) =  1 + ( ~ / 8 ) ( f - l ) ( ? - 6 1 n 2 )  

to first order in E .  This amplitude ratio increases linearly with f and the numerical 
results for various values of f  and E = 1 ( d  = 3) are shown in table 2. 

3. Monte Carlo calculations 

In this section the uniform star is modelled as f self- and mutual-avoiding walks, 
starting at a common vertex (the origin, say) of a three-dimensional lattice. The self- 
and mutual-avoiding conditions mimic the excluded-volume effect. We use an inversely 
restricted sampling technique (Rosenbluth and Rosenbluth 1955) to generate a sample 
off-stars up t o f =  6 on the simple cubic (sc) lattice and up t o f =  8 on the body-centred 
cubic (BCC) lattice. We have also considered the casesf= 1 a n d f =  3 on the face-centred 
cubic ( F c c )  lattice. Sample sizes used were typically between 300 000 and 900 000 and 
maximum branch lengths were between 30 and 50. 

When f = 1 we have a self-avoiding walk, where we expect that 

( S ( n ,  1)*)= A(l )n2U[1+D( l )n - ’+O(n- ’ ) ]  (3.1) 
where v is about 0.588 and A is about 0.47 (Le Guillou and Zinn-Justin 1980). If we 
plot In(S(n,f)*) against In n we obtain a set of parallel straight lines for the various 
values of J This strongly suggests that the exponent v is independent o f f  and we 
assume the value 0.588 throughout the analysis. (In our previous work (Whittington 
et al 1986) we found that the estimated values of amplitude ratios were essentially 
independent of the assumed value of v in the range 0.58-0.6.) 

With this assumption about the value of the exponent v we have plotted 
( S ( n , f ) * ) / r ~ ~ . ~ ’ ~  against n in figure 1 for the BCC lattice. The asymptotic regime is 
reached remarkably quickly, especially for small values o f t  To estimate the amplitude 
ratios A ( f ) / A ( l )  we have plotted (S(n,f)*)/(S(n, 1)*) against n in figures 2 and 3 for 
the sc and BCC lattices, respectively. This ratio should tend to A ( f ) / A ( l )  for n large 

0.21 4 

O.I7 i 
0.16, 

0 10 30 50 
n 

Figure 1. Reduced mean-square radius of gyration of a branch of an f-star for the BCC 
lattice. O,f= 1 ; 0 , f = 2 ;  A , f = 3 ; V , f = 6 ; 0 , f = 8 .  Fo r f<8  theerrorbars(0nestandard 
deviation) are no larger than the size of the symbols. 
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0 10 30 
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59 

Figure 2. Ratio of the mean-square radius of gyration of a branch of an f-star to that of 
a self-avoiding walk for the sc lattice. A, f =  3; 0, f =  4; 0, f =  5 ;  V, f =  6 .  

1.15 

1.00 I I I I 1 
0 10 30 

n 
50 

Figure 3. Ratio of the mean-square radius of gyration of a branch of an f-star to that of 
a self-avoiding walk for the BCC lattice. 0,  f =  2; A, f= 3; 0, f =  6 ;  0, f= 8. 

piovided that the exponent v is independent o f f :  Our estimates of the amplitude 
ratios are given in table 2. It appears that the amplitude ratios are lattice independent. 
We have examined this possibility further by estimating the amplitudes for f =  1 and 
3 for the FCC lattice. The n dependence is shown in figure 4 and we estimate that the 
amplitude ratio A(3) /A(  1) = 1.045 * 0.01, in close agreement with that for the other 
two lattices. 

Since the amplitude ratios are lattice independent they are universal quantities, 
suitable for comparison with experimental results and with the results of the first-order 
pertdrbation calculations. The agreement between the two methods is quite good, 
especially at small f: As f increases the differences become more marked and we note 
that values from the first-order perturbation calculations are larger than the Monte 
Carlo results. In both cases the results indicate an increase in the amplitude ratio with 
increasing f which is related to the increased interference between the branches. A 
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Figure 4. Reduced mean-square radius of gyration of a branch of an f-star extrapolated 
against K O 4 ’  for the FCC lattice. O , f =  1; A , f = 3 .  Error bars (one standard deviation) 
are no larger than the size of the symbols. 

similar effect is seen in the estimates of the statistics exponent ~ ( f )  (Wilkinson et a1 
1986). 
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